
E I N S T E I N V I S I O N C H E A T S H E E T (UNOFFICIAL) 09/16/2019

Page | 1

Overview

Einstein Vision helps to recognize and classify images or objects at scale using deep learning

model. Einstein Vision supports the following APIs such as Einstein Image Classification & Einstein

Object Detection.

Process flow (Create Dataset with Labels -> Train the Dataset -> Generate the Model -> Classify the data -> Prediction

Score -> Add feedback)

Setup

Signup on Einstein Platform Services Account-

https://api.einstein.ai/signup

On the activation page, click “Download Key” to

save the key file named

“einstein_platform.pem” locally.

Install cURL- https://curl.haxx.se/download.html

Get Token- https://api.einstein.ai/token

Click on “Get Token” button and Keep the

access token to execute the next operations.

Terminologies

Dataset– Training data or sample set of

master data

Label– Segregation of similar types of data

using Label

Model– A machine-learning program to

classify images or objects with respect to

label

Training– Process to train the dataset

Prediction– Result to predict the data with

respect to trained dataset using the specified

model

https://api.einstein.ai/signup
https://api.einstein.ai/signup
https://curl.haxx.se/download.html
https://curl.haxx.se/download.html

E I N S T E I N V I S I O N C H E A T S H E E T (UNOFFICIAL) 09/16/2019

Page | 2

E I N S T E I N V I S I O N C H E A T S H E E T (UNOFFICIAL)

Einstein Image Classification

Enables developers to recognize and classify images at scale using deep learning models with the help of Einstein

Image Classification API.

Create the Dataset

Organize the same types of images in each folder with correct label and create a zip file. For

example, that we can segregate the quality of images of soils such as Good soil, Bad soil & Average

soil in each folder and make a zip file named “Soils.zip”. Einstein Vision will predict the quality of

soil for farming.

[Note: Please replace the <TOKEN>, <DATSET_ID>, <MODEL_ID> with the proper values for the following syntaxes.]

Upload the Dataset

curl -X POST -H "Authorization: Bearer <TOKEN>" -H "Cache-Control: no-cache" -H "Content-Type: mu
ltipart/form-data" -F "type=image" –F "data=@D:\Einstein Vision\Soils\Soils.zip" https://api.eins
tein.ai/v2/vision/datasets/upload

Replace TOKEN from https://api.einstein.ai/token | data is being used for local drive address to get the dataset

For the web address, we need to use path instead of using data.

"path=https://einstein.ai/images/mountainvsbeach.zip"

Keep the generated Dataset Id.

This is the asynchronous process. In this case, we need to check the upload status by the

following cURL command

curl -X GET -H "Authorization: Bearer <TOKEN>" \
 -H "Cache-Control: no-cache" \
 https://api.einstein.ai/v2/vision/datasets/<DATASET_ID>

We can upload the data in synchronous way by using upload/sync in the main data uploading cURL com

mand <https://api.einstein.ai/v2/vision/datasets/upload/sync>

Train the Dataset

curl -X POST -H "Authorization: Bearer <TOKEN>" -H "Cache-Control: no-cache" -H "Content-Type: mu
ltipart/form-data" -F "name= Soils Model" -F "datasetId=<DATASET_ID>" https://api.einstein.ai/v2/
vision/train

Need to set the Dataset Id from the previous step.

Keep the generated Model Id.

We can provide the name of the model as per business model.

python -m json.tool can be used to set the output as in JSON format in command prompt in this

way

https://api.einstein.ai/token
https://api.einstein.ai/token
https://api.einstein.ai/v2/vision/datasets/%3cDATASET_ID
https://api.einstein.ai/v2/vision/datasets/%3cDATASET_ID

E I N S T E I N V I S I O N C H E A T S H E E T (UNOFFICIAL) 09/16/2019

Page | 3

E I N S T E I N V I S I O N C H E A T S H E E T (UNOFFICIAL)

curl -X POST -H "Authorization: Bearer <TOKEN>" -H "Cache-Control: no-cache" -H "Content-Type: mu
ltipart/form-data" -F "name= Soils Model" -F "datasetId=<DATASET_ID>" https://api.einstein.ai/v2/
vision/train|python -m json.tool

To get the status of training

curl -X GET -H "Authorization: Bearer <TOKEN>" -H "Cache-Control: no-cache"
https://api.einstein.ai/v2/vision/train/<YOUR_MODEL_ID>

After completion of training, it will return progress value as 1 with the status as “SUCCEEDED”.

Training Quality Check

To get accuracy, f1 score and confusion matrix

curl -X GET -H "Authorization: Bearer <TOKEN>" -H "Cache-Control: no-cache" https://api.einstein.
ai/v2/vision/models/<MODEL_ID>

Need to set the Model Id from the previous step.

To get Learning Curve about the training

curl -X GET -H "Authorization: Bearer <TOKEN>" -H "Cache-Control: no-cache" https://api.einstein.
ai/v2/vision/models/<MODEL_ID>/lc

Get the Predicted Result

curl -X POST -H "Authorization: Bearer <TOKEN>" -H "Cache-Control: no-cache" -H "Content-Type: mu
ltipart/form-data" -F "sampleContent=@D:\Einstein Vision\Soils\Good\good1.jpg" -F "modelId=<MODEL
_ID>" https://api.einstein.ai/v2/vision/predict

sampleContent is used to refer the path of the image in the local drive.

samleLocation can be used here if we want to take the image dirrectly from http.

Add Feedback

curl -X POST -H "Authorization: Bearer <TOKEN>" -H "Cache-Control: no-cache" -H "Content-Type: mu
ltipart/form-data" -F "modelId=<MODEL_ID>" -F "data=@D:\Einstein Vision\Soils\Bad\good16.jpg" -F
"expectedLabel=Good" https://api.einstein.ai/v2/vision/feedback

Retraining

curl -X POST -H "Authorization: Bearer <TOKEN>" -H "Cache-Control: no-cache" -H "Content-

Type: multipart/form-data" -F "modelId=<MODEL_ID>" -F "trainParams={\"withFeedback\" : true}" htt
ps://api.einstein.ai/v2/vision/retrain

https://api.einstein.ai/v2/vision/train/%3cYOUR_MODEL_ID
https://api.einstein.ai/v2/vision/train/%3cYOUR_MODEL_ID
https://api.einstein.ai/v2/vision/models/%3cMODEL_ID
https://api.einstein.ai/v2/vision/models/%3cMODEL_ID
https://api.einstein.ai/v2/vision/models/%3cMODEL_ID
https://api.einstein.ai/v2/vision/models/%3cMODEL_ID
https://api.einstein.ai/v2/vision/predict
https://api.einstein.ai/v2/vision/predict

E I N S T E I N V I S I O N C H E A T S H E E T (UNOFFICIAL) 09/16/2019

Page | 4

E I N S T E I N V I S I O N C H E A T S H E E T (UNOFFICIAL)

Einstein Vision Result by Apex Class

1. Upload the private key file named ‘einstein_platform.pem’ into Salesforce Files.

2. Create Remote Site with the following URL: https://api.einstein.ai

3. Clone or Download a ZIP file for JWT Master. https://github.com/salesforceidentity/jwt

4. Create JWT & JWTBearerFlow Apex Classes to generate access token.

5. Clone or Download the Apex Classes from https://github.com/MetaMind/apex-utils

6. Create Apex Util Classes such as HTTPFormBuilder & Vision.

7. To see the output of prediction, we can take a sample of Visualforce Page provided by

Salesforce. Please create the Visualforce Page and respective Apex Class from

README.md file of apex-utils GIT repository.

8. We can get the output by executing a trigger also. We can write a trigger on

ContentVersion object to get the predicted result when user uploads any image in a file

for a record. Remember, that trigger should be in asynchronous nature.

Create a new Model with the feedbacks

If we want, we can also create a new model with the latest feedbacks.

curl -X POST -H "Authorization: Bearer <TOKEN>" -H "Cache-Control: no-cache" -H "Content-

Type: multipart/form-data" -F "name=Soils Model With Feedback" -F "datasetId=<DATASET_ID>

" -F "trainParams={\"withFeedback\" : true}" https://api.einstein.ai/v2/vision/train

Delete the Dataset

curl -X DELETE -H "Authorization: Bearer <TOKEN>" -H "Cache-Control: no-cache" https://ap

i.einstein.ai/v2/vision/datasets/<DATASET_ID>

The deletion may not occur immediately.

Keep the deleted object id.

to get the status of deletion

curl -X GET -H "Authorization: Bearer <TOKEN>" -H "Cache-Control: no-cache" https://api.e

instein.ai/v2/vision/deletion/<DELETEDOBJECT_ID>

Delete the Model

curl -X DELETE -H "Authorization: Bearer <TOKEN>" -H "Cache-Control: no-cache" -H "Conten

t-Type: multipart/form-data" https://api.einstein.ai/v2/language/models/<MODEL_ID>

https://github.com/salesforceidentity/jwt
https://github.com/salesforceidentity/jwt
https://github.com/MetaMind/apex-utils
https://github.com/MetaMind/apex-utils

E I N S T E I N V I S I O N C H E A T S H E E T (UNOFFICIAL) 09/16/2019

Page | 5

E I N S T E I N V I S I O N C H E A T S H E E T (UNOFFICIAL)

Einstein Object Detection

Enables developers to recognize the object details like object coordinates, size, location of each object as well as

developers can distinguish multiple distinct objects using deep learning models with the help of Einstein Object

Detection API.

Create the Dataset

Organize the in each folder with correct label and store all the necessary information like height,

coordinates, name, image uRL etc. We can refer the object detection zip file provided by Salesforce.

The object detection zip file must contain the images and an annotations.csv file in the required

format like:

https://einstein.ai/images/alpine.zip

Prebuilt Models

We can use some prebuilt models provided by Einstein Vision to get the predicted result.

• Food Image Model – To get the result we must use modelId as “FoodImageClassifier” like:

curl -X POST -H "Authorization: Bearer <TOKEN>" -H "Cache-Control: no-cache" -H "Content-Type

: multipart/form-data" -F "sampleLocation=http://einstein.ai/images/foodimage.jpg" -F "modelI

d=FoodImageClassifier" https://api.einstein.ai/v2/vision/predict

Upload the Dataset

curl -X POST -H "Authorization: Bearer <TOKEN>" -H "Cache-Control: no-cache" -H "Content-

Type: multipart/form-data" -F "path=https://einstein.ai/images/alpine.zip" -F "type=image

-detection" https://api.einstein.ai/v2/vision/datasets/upload

Please notice that to upload the data for Einstein Object Detection, we need to write

type=”image-detection”.

Train the Dataset

Same as Einstein Image Classification

Get the Predicted Result

curl -X POST -H "Authorization: Bearer <TOKEN>" -H "Cache-Control: no-cache" -H "Content-

Type: multipart/form-data" -F "sampleContent=@C:\data\alpine.jpg" -F "modelId=<YOUR_MODEL

_ID>" https://api.einstein.ai/v2/vision/detect

Here we have used “detect” keyword instead of “predict” which has been used to get the

predicted result for Image Classification.

https://einstein.ai/images/alpine.zip
https://einstein.ai/images/alpine.zip
https://metamind.readme.io/docs/food-image-model
https://metamind.readme.io/docs/food-image-model
https://api.einstein.ai/v2/vision/datasets/upload
https://api.einstein.ai/v2/vision/datasets/upload
https://api.einstein.ai/v2/vision/detect
https://api.einstein.ai/v2/vision/detect

E I N S T E I N V I S I O N C H E A T S H E E T (UNOFFICIAL) 09/16/2019

Page | 6

E I N S T E I N V I S I O N C H E A T S H E E T (UNOFFICIAL)

• General Image Model - To get the result we must use modelId as “GeneralImageClassifier”

• Scene Image Model - To get the result we must use modelId as “SceneClassifier”

• Multi-Label Image Model -To get the result we must use modelId as

“MultiLabelImageClassifier”

Training Data & Test Data

• Training data—Samples are being used by the training process to create the model.

• Test data— Samples are being used by the training process to test the model accuracy.

Einstein Vision—90% of the data/samples is used to create the model, and 10% is used to test the

model accuracy.

Using Global Dataset

We can use Global Dataset to create negative class in our model. Let’s say, we have created three

Soil labels such as Good, Average & Bad. But it will be good if we use global dataset to create the

separate negative class, called “Other” so images not like soil would be returned as “Other”

images. Please follow this link: https://metamind.readme.io/docs/use-global-datasets

Best Practices

• Try to keep at least 1,000 examples per dataset label to get the better prediction.

• Objects in the images should be visible and recognizable.

• Please keep the images in forward-facing and not in an angle.

• Try to keep each dataset label should have same number of images as well as variety of

images with the following characteristics

o Color

o Black and white

o Blurred

o With other objects the object might typically be seen with

o With text and without text (if applicable)

• In a binary dataset, include images in the negative label that look like images in the

positive label also to get the correct probability of segregation.

• For a multi-label model, try to include images with objects that appear in different areas

within the image.

References

• Introduction to Salesforce Einstein Vision: https://metamind.readme.io/docs/introduction-to-the-einstein-

predictive-vision-service

• Trailhead: Quick Start: Einstein Image Classification :

https://trailhead.salesforce.com/en/content/learn/projects/predictive_vision_apex

Author: Santanu Pal, 14x Salesforce Certified System Architect & Application Architect

Blog: https://www.santanuatonline.com

https://metamind.readme.io/docs/general-image-model
https://metamind.readme.io/docs/general-image-model
https://metamind.readme.io/docs/scene-image-model
https://metamind.readme.io/docs/scene-image-model
https://metamind.readme.io/docs/multi-label-image-model
https://metamind.readme.io/docs/multi-label-image-model
https://metamind.readme.io/docs/use-global-datasets
https://metamind.readme.io/docs/use-global-datasets
https://metamind.readme.io/docs/introduction-to-the-einstein-predictive-vision-service
https://metamind.readme.io/docs/introduction-to-the-einstein-predictive-vision-service
https://metamind.readme.io/docs/introduction-to-the-einstein-predictive-vision-service
https://metamind.readme.io/docs/introduction-to-the-einstein-predictive-vision-service
https://trailhead.salesforce.com/en/content/learn/projects/predictive_vision_apex
https://trailhead.salesforce.com/en/content/learn/projects/predictive_vision_apex
https://www.santanuatonline.com/
https://www.santanuatonline.com/

