
Salesforce Developer Group, Kolkata, India

20th March 2021
7:30PM IST

1

Our Speakers

2

Agenda

• Why JavaScript Certification?

• Exam Structure

• Listen to experts who have passed the JavaScript Certification

• How this preparation benefits LWC development (solving real life
Use Cases using ECMAScript, when to do what)

By the end of this session, you will overcome business
challenges applying the knowledge of JavaScript.

3

Surprise

4

Why JavaScript Developer 1 Certification?
• With the introduction of Lightning Web Components where JavaScript is a prime language to

develop components.

• There are no other Salesforce provided certifications on JavaScript till date

• This is entry level certification for candidates who wants to develop front-end and/back-end JS
App for web stack.

• During preparation, developers will learn JavaScript as well as LWC

• As a developer or team lead, this knowledge will help to accelerate the project deliveries and
maintenance in an efficient way.

• It has a huge demand in the market and employers are looking this as key certification

5

Exam Structure
MCQ Exam Details

• 65% passing score
• 105 minutes duration
• 65 questions (5 questions

unscored)
• No pre-requisites

Link to Superbadge

6

https://trailhead.salesforce.com/content/learn/superbadges/superbadge_lwc_specialist?trailmix_creator_id=strailhead&trailmix_slug=prepare-for-your-salesforce-javascript-developer-i-credential

How JavaScript fits into LWC

➢ Lightning Web Components are the lightweight frameworks
built on web standards. It also supports standard Web
Component framework.

➢ Lightning Web Components are custom HTML elements
built using HTML and modern JavaScript libraries (including
latest ESXX features)

➢ Lightning Web Components are UI framework to develop
Desktop and Mobile applications.

➢ Lightning Web Components is open source, so enterprise-
ready web components on any platform, not just Salesforce

➢ LWC components comprise of HTML, JS and meta file

7

Let’s first listen to experts

➢ Motivation to take this exam

➢ Timeframe to prepare this exam

➢ Any Challenges faced during preparation or during exam

➢ Useful tips to prepare

➢ How it helps them on LWC Development

8

The Mental JavaScript Console

9

Practice, Practice, Practice!

10

Variables, Types and Collections (22%)

11

Variable Declarations

Declaration Usage Initialization Variable Hoisting

(Use before declare)

Scope

var var x; //undefined

var x = 10;

Optional console.log(x); //undefined

var x = 10;

Function

let let str = ‘tom’;

let name; //undefined

Optional console.log(x); //ReferenceError

let x = 10;

Block

const const x = 10;

x = 7; //can’t reassign

Mandatory console.log(x); //ReferenceError

const x = 10;

Block

No declaration x = 7; //same as below

console.log(window.x);

Optional console.log(x); //ReferenceError

x = 10;

Window or

global

var, let and const

12

Types

Primitive Data Types – Boolean, number, string, symbol, null, undefined

Primitive Wrapper Objects – Object wrapper can contain properties

Type Casting – explicit conversion from one to another

falsy – false, 0, NaN, undefined, null, (‘’), (“”)

typeof – returns a string indicating the type of value

instanceof – checks the value is instance of an object

Boolean b = new Boolean(‘false’);

Number num = new Number(9.08);

typeof (‘99’) // “string”

const q = new Number (‘10’);

q instanceof Number; //true

Type Coersion – implicit conversion of values

10 + ‘2’ + undefined; // “102undefined”

true + 10 * 2; //21

‘bat’ + null; // “batnull”

“35” – 5; //30

if (0){

//this block will never execute

}

Equality Operators –
• Abstract Comparison ==
• Strict Comparison === (compare types & values of primitive)

13

Using String

String

• Single and double quotes, both are valid
• Template literals are allowed within back

tick

const city = ‘Kolkata’;

console.log (`Our city is ${city}`);

• indexOf – index of first occurrence of substring
• substring - returns a substring
• includes – returns a boolean if string is present
• trim – removes leading & trailing spaces
• slice – extracts a section of string & returns a new string

String Methods const sentence = 'The quick brown fox jumps over the lazy dog.';

const word = 'fox’;

console.log (sentence.indexOf(word)); //16

console.log(sentence.substring(1,3)); //he

console.log(sentence.slice(4,19)); // "quick brown fox"

14

Play with Arrays

Array - Stores multiple values into single variable

let fruits = [‘Apple’, ‘Banana’, ‘Orange’]; //single dimensional array

let fruits = new Array (‘Apple’, ‘Banana’, ‘Orange’);

let arr = [[‘a’, 1], [‘b’, 2], [‘c’, 3]]; //multi-dimensional array

//following creates array taking each character

let fruits = Array.from (‘Apple’); // [“A”, “p”, “p”, “l”, “e”],

let arr = Array.of(5); //[5], here 5 is value of 0th index

let arr2 = Array (3); //[undefined, undefined, undefined] , creates

array with size 3

Array.isArray(fruits); //true

Looping through an array

for…in (index wise) for…of (element wise) Traditional for loop for…each (operates on function)

let fruits = ['Apple', 'Banana', 'Orange'];

for (let x in fruits) {

console.log(fruits[x]);

}

// Apple, Banana, Orange

let fruits = ['Apple', 'Banana',

'Orange'];

for (let x of fruits) {

console.log(x);

}

//Apple, Banana, Orange

const arr = [1, 4, 9, 16];

for (let i=0; i< arr.length; i++){

console.log(arr[i]);

}

//1,4,9,16

[2, 5, 9].forEach(logArrayElements);

function logArrayElements(element, index, array) {

console.log('a[' + index + '] = ' + element);

}

//a[0] = 2, a[1] = 5, a[2] = 9

15

Arrays with Real Life Use Case
Array.map – creating an upon looping through the elements

@wire(getAllProducts)
wiredAllProducts({ error, data }) {

if (data) {
data.map(element=>{

this.listItems = [...this.listItems,{value:element.Id,
label:element.Name}];

});
}

}

Array.filter – if a datatable row to be removed based on recordId

handleRemoveComboItems(event){
const removeItem = event.target.dataset.item; //"0032v00002x7UEHAA2"
this.listValues = this.listValues.filter(item => item != removeItem);

}

Array.slice – datatable with pagination

this.data = this.items.slice(this.startingRecord, this.endingRecord);

For example, on 2nd page, label will be shown as => "Displaying 6 to 10 of 23
records. Page 2 of 5"

page = 2; pageSize = 5; startingRecord = 5, endingRecord = 10

so, slice(5,10) will give 5th to 9th records. 16

const arr = [1, 4, 9, 16];

// pass a function to map

const mapA = arr.map(x => x * 2);

console.log(mapA);

// expected output: Array [2, 8, 18,

32]

const arr = [1, 4, 9, 16];

// pass a function to map

const mapA = arr.filter(x => x % 2);

console.log(mapA);

// expected output: Array[4,16]

const arr = [1, 4, 9, 16];

console.log(arr.slice(1,3)); //final

index omitted

// expected output: Array[4,9]

Creating and returning new Array (original array content does not change)

sort – returns sorted array splice – changes the content by

adding or removing elements

reduce – executes reducer function on each

element resulting single output value.

push – add elements(s) at end.

const arr = [1, 4, 9, 16];

console.log(arr.sort());

//Array[1,16,4,9]

const arr = [1, 4, 9, 16];

//replaces first element with 5

arr.splice(0,1,5);

console.log(arr); //Array[5,4,9,16]

const arr = [1, 4, 9, 16];

const reducer = (acc, curr) => acc + curr;

// 1 + 4 + 9 + 16

console.log(arr.reduce(reducer)); //output: 30

const arr = [1, 4, 9, 16];

arr.push(25); //Array[1,4,9,16,25]

arr.pop(); //removes last element

refer shift, unshift functions

MAP – holds key/value pair. SET – holds unique values (no duplicates)

let vmap = new Map ([['a', 1], ['b', 2], ['c', 3]]);

vmap.set('b',10); //assigns values based on key

vmap.get('c'); //get the values based on key

vmap.has('a'); //check existence

Refer: add, delete, keys, values, forEach functions on Map

let pSet = new Set([1,4,9,4,16]);

console.log(Array.from(pSet.values())); //Array[1,4,9,16]

pSet.has(16); //check existence

pSet.size(); //size of array, output 4

Refer: add, delete, keys, values, forEach functions on Set

17

Array Methods where it changes original Array

Collections – Map & Set

JSON

Serializing objects, arrays, numbers, strings, booleans and nulls

JSON.parse – parse a JSON string and converts

JavaScript value or object.

JSON.stringify – converts JavaScript object or value to JSON

String.

const json = '{"result":true, "count":42}';

const obj = JSON.parse(json);

console.log(obj.result); //true

console.log(JSON.stringify([new Number(3), new String('false'),

new Boolean(false)]));

//expected output: "[3,"false", false]"

18

➢ If we want to send a collection to Apex Class from JS Controller. we have to transform to String by
using JSON.Stringify() and send to Apex Class.

➢ It is a common way of exchanging request and response for Webservice Integration.

Objects, Functions and Classes (25%)

19

Objects

Features

• Objects are mutable

• Object is a non-primitive data type in JavaScript

• Objects can be inherited from another Object

• Gets their own variable context when created

• Every object has __proto__ Object property which refers

Parent object.

• Objects are passed by reference; primitives are passed by

value

➢ Objects are nothing but the collection of properties.

➢ Property is an association between name (or key) and value.

20

let emp = {

name: “David",

dept: "IT"

}

Object

Creating Objects

Using new operator from a class

class Employee {

constructor() {

this.name = '';

this.dept = 'general';

}

}

let emp = new Employee();

emp.name = ‘David';

Using Prototype with Object.create

let emp = {

name: “David",

dept: "IT"

}

Using functions

function createEmp (name, dept){

return {

name: name,

dept: dept

}

}

let emp = createEmp(‘David', 'IT');

Using literal

const employee = {

name: '',

dept: ''

}

const emp = Object.create (employee);

emp.name = ‘David';

emp.dept = 'IT';

21

Experiment 1
Code Snippet

O/P

a b

All objects are interacted by
reference in JavaScript

Welcome to this sessionHello everyone

22

let a = {welcomeMsg: 'Welcome to this session’};

let b;

b = a;

a.welcomeMsg = 'Hello everyone’;

console.log(b.welcomeMsg);

Defining & Using Properties

Key/value using semicolon

let emp = {

name: “David",

dept: "IT"

}

//to delete property

delete emp.name;

Assigning hardcoded Property

let emp = {

name: “David",

dept: "IT"

}

emp.Id = “1001”;

Dynamic Assignment

emp [dynamicValue] = ‘Kolkata’;

emp [‘id’] = 1001;

defineProperty (extra options)

Object.defineProperty(emp, ‘doj',

{

value: new Date(),

writable: false

});

Using getter/setter

let emp = {

sname: '',

get name(){

return this.sname;

},

set name(str){

this.sname = str;

}

}

emp.name =‘David'; 23

Writable: value of property can be changed
Enumerable: whether the property can be found using
Object.keys()
Configurable: if property can be deleted / modified

Inheritance

Object.keys and Object.values

let emp = {

name: “David",

dept: "IT"

}

console.log (Object.keys(emp)); // Array [“name”, “dept”]

console.log (Object.values(emp)); //Array [“David”, “IT”]

Define an Object

24

Object

toString()

hasOwnProperty()

Animal

color (property)

__proto__

Tiger Dog

__proto__
__proto__

➢ We can inherit the properties/ methods from the parent class
to child class by using ‘extends’ keyword.

Here, class Tiger extends Animal {}

Arrow Function (introduced in ES6)

const squareANumber = function(number) {

return number * number;

}

const squareANumber = (number) => number * number;

It inherits value of this from where they were called

import {subscribe, unsubscribe, APPLICATION_SCOPE, MessageContext} from 'lightning/messageService';

export default class DisplayLocationSubscriber extends LightningElement {

subscribeToMessageChannel() {

if (!this.subscription) {

this.subscription = subscribe(

this.messageContext,

selectedEntity,

(message) => this.handleMessage(message),

{ scope: APPLICATION_SCOPE }

);

}

}

handleMessage(message) {

//do something

}

}

LMS

25

26

O/P

Experiment 2 (using arrow function)

Browser and Events (17%)

27

Event Handling

Statement Functionalities

window.history.back(); It is used to redirect to the previous page.

window.scrollTo(0, 1000); It is used to scroll the particular point automatically.

window.history.forward(); It is used to forward the next page.

window.location.href It is used to navigate the specific URL.

Statement Functionalities

onchange It will be triggered based on the element change

onload It will be triggered for onloading page

onclick It will be triggered when user clicks on element

onkeydown It will be triggered on the pressing of key down, same is applicable for

key up

onmouseover,
onmouseout

It will be triggered on mouse over/ mouse away from the element.

defines the events/action initiation by user or browser

window
events

html
events

28

Event Propagation defines how to travel events through Document Object Model (DOM)
tree.

Capture – propagate from window to the target element through DOM tree
Target – event is generated from this element in the DOM tree
Bubble - propagate from target element to window through DOM tree 29

Experiment 1
Capture Phase

O/P

Code Snippet

30

Experiment 2
Bubble Phase (default)

Code Snippet

event.stopPropagation() at div2
<<halts event propagation>>

O/P O/P

To trigger the custom events, we need to dispatch the event by
following syntax:
this.dispatchEvent(new CustomEvent(‘eventName’,
detail:{parameters}))

31

Asynchronous Programming (13%)

32

Asynchronous Programming
JavaScript is

➢ Synchronous

➢ blocking

➢ single-threaded language

It means only one operation can be in progress at a time

Asynchronous Execution (Promise/ async-await)

33

A real-life coding scenario. Build an
account 360 from different data
sources.

▪ Number of cases open - Salesforce

▪ Number of Open Opportunity -
Salesforce.

▪ Product information (External system)

▪ Payment Information based on
product data (External system)

34

Simplify the promise chain with async-await

35

Digging dipper into Promise

Promise has 3 states

• Pending – waiting for
execution (Default)

• Resolve - Success

• Reject - Failure

1. Promise.all (iterable) : Wait for all promises to be resolved, or for any to be rejected.

36

Promise.allSettled (iterable) : method returns a promise that resolves after all of the given
promises have either fulfilled or rejected, with an array of objects that each describes the outcome of
each promise.

It is typically used when you have multiple asynchronous tasks that are not dependent on one
another to complete successfully, or you'd always like to know the result of each promise.

37

Promise.any (iterable): Takes an iterable of Promise objects
and, as soon as one of the promises in the iterable fulfills,
returns a single promise that resolves with the value from
that promise.

Promise.race(iterable): Wait until any of the promises
is resolved or rejected.

38

Server-Side JavaScript (8%)

39

Server Side Rendering

40

Basics – Client vs. Server-Side Rendering

41

Basics – Client vs. Server-Side Rendering

42

Node.js & Salesforce

Nforce - https://github.com/kevinohara80/nforce

Jsforce - https://github.com/jsforce/jsforce

43

https://github.com/kevinohara80/nforce
https://github.com/jsforce/jsforce

Node.js & Express

44

Node.js & LWC

45

Node.js – Key HTTP Methods

46

Node.js – Key Concepts

47

Node.js – Packaging

48

Debugging, Error Handling (7%)

49

Debugging
Every time, we need to debug code for searching errors and diagnose the code base to check the desired output

Statement Description When?

debugger; It stops the execution of JavaScript and call the

debugging function

You can use the debugger to see the output at the

particular breakpoint

console.table() It displays the data in a table format You can printout the array of objects by this function to

concise the output

console.warn() It will show the warning message. You can print out the error message from try-catch block

to see the warning message

console.error() It will show the error message. You can print out the error message from try-catch block

to see the error message

console.assert() It helps to assertion the results. If assertion

fails, this function will return an error message.

It’s required at the time of assertion to check the stability

of DOM element.

console.time()

console.timeEnd()

It helps to determine the execution time of

certain block.

You can print the timeframe to execute the certain block

to check the system performance

console.log() It is used to print the result of any variables If you want to show the output of variables, you can use

50

Experiment 1

O/P

Code Snippet

51

Experiment 2 (using console.time in LWC)

52

Timer
O/P

Onload

During
Saving

53

Error Handling
Codes don’t go always well. Now, need to see how to manage the errors in JavaScript

➢ try statement to execute your code

➢ catch statement helps to handle the error

➢ throw statement helps to create custom errors

➢ finally statement always executes after
try/catch block execution

try without catch and without finally is possible in JS

54

Experiment 1

O/P

Code Snippet

55

Experiment 2

O/P

Code Snippet

56

Testing (8%)

57

Testing

Unit Tests- Testing of individual units like functions or classes by supplying input
and making sure the output is as expected:

expect(fn(5)).to.be(10)

Integration Tests- Testing processes across several units to achieve their goals,
including their side effects:

const flyDroneButton = document.getElementById('fly-drone-
button')

flyDroneButton.click()

assert(isDroneFlyingCommandSent())

//or even
drone.checkIfFlyingViaBluetooth()

.then(isFlying => assert(isFlying)) 58

Testing

End-to-end Tests (also known as e2e tests or functional tests)- Testing how
scenarios function on the product itself, by controlling the browser or the
website. These tests usually ignore the internal structure of the application
entirety and look at them from the eyes of the user like on a black box.

Go to page "https://localhost:3303"

Type "test-user" in the field "#username"

Type "test-pass" in the field "#password"

Click on "#login"

Expect Page Url to be https://localhost:3303/dashboard

Expect "#name" to be "test-name"

59

Tools to use

jsconsole.com

60

Recap
• We have learnt following topics today

• Exam topics in JavaScript certifications

• Sample Use Cases related to JavaScript

• How JavaScript knowledge can be leveraged in LWC development

61

Q & A

62

Few Contributions from us

63

64

Website: http://www.gauravkheterpal.com/

@gauravkheterpal

Website: https://avionsalesforce.blogspot.com/

@avi31c

Website: http://santanuboral.blogspot.com/

@santanuboral

Website: https://santanuatonline.com/

@drsantanupal

Keep in touch!

http://www.gauravkheterpal.com/
https://twitter.com/gauravkheterpal
https://avionsalesforce.blogspot.com/
http://santanuatonline.com/

Further Study Reference

65

➢ Salesforce JavaScript Developer I Certification Cheat Sheet - 6 Pager

➢ Tips for passing Salesforce certified JavaScript Developer I Certification

➢ Salesforce JavaScript 1 certification Series by Nikhil Karkra

https://santanuboral.blogspot.com/2020/09/JavaScriptDevI-cheatsheet.html
http://santanuboral.blogspot.com/2020/08/SFDC-JavaScriptDevI-Cert.html
https://www.youtube.com/playlist?list=PLSWzWO4OqYAqQ8i16aIMakTW7InVuMTZF
https://trailhead.salesforce.com/en/users/strailhead/trailmixes/prepare-for-your-salesforce-javascript-developer-i-credential

Thank You!
Salesforce Kolkata Developer Group

66

